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* Develop controllers for spacecraft docking that are:
— Autonomous w.r.t. crew/ground control
— Computationally lightweight
— Provably safe
— Input constrained
— Robust to bounded disturbances
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What is Safety?

« Asystemis called “safe” at time ¢ if its state x(¢) € R" belongs
to a designated safe set Sy, (t) C R"™ (potentially time-varying)

* In this paper, “safety” = “meets requirements”
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Safe Spacecraft Docking

» “Safety” = “meets requirements”

* Spacecraft docking has required tolerances
— Narrow docking mechanism (cross-track, radial relative position)
— Docking must occur within specified velocity tolerances (in-track velocity)

* Describe tolerances by aset §;, C R"
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Safe Spacecraft Docking

e Spacecraft docking is a “tight tolerance” problem
1. Safe set is small (in the context of the problem)
2. Docking target lies close to the boundary of the safe set
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Outline and Contributions

1. Achieving provable safety in the presence of input constraints
and disturbances (see [6])

Extension of safety to allow for tight tolerance objectives
Application to spacecraft docking

[6] J. Breeden and D. Panagou, “Robust control barrier functions under high relative degree and input constraints for
satellite trajectories,” Automatica, 2022, under review. [Online]. Available: https://arxiv.org/abs/2107.04094
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Primary Tool

e Control Barrier Functions (CBFs)

— ACBF H : T x R" — R is a tool for provably ensuring that the system
state always lies within a designated safe set §;, C R"

e QOur formulation o
— State x € R" controlu e Y C R time t € T C R f

— Dynamics & = f(t,x) + g(t, ) (u + wy) + wy
with bounded disturbances ||wy || < Wy max, |We|| < Wa max

— Safeset: Sy, (t) = {x € R" | h(t,z) < 0} for a given
function h : 7 x R™ — R of relative-degree two

— Desigh a CBF H such that Sy (t) ={z €¢ R" | H(t,x) < 0}isa
subset of Sy, (%) and then render Sy forward invariant
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Background — Control Barrier Functions

/Deﬁnition. A C' function H : T x R™ — R is a Control Barrier\
Function (CBF) on a set X if there exists a locally Lipschitz
continuous ag € K such that Vz € X(t),t € T,

max  inf H(t,z,u, wy,wy) < ao(—H(t,z)).

||w'u, || éwu,max uel

k ”wﬂi‘HSwaz,max /

H(t, 2, u, Wy, we) = O H(t,x) + VH(E, ) f(t, ) + VH(E, x)g(t, x)u

N vV
known, uncontrolled known, controlled

+ VH(t,x)g(t, x)w, + VH(t, x)w,

unknown, bounded

(where K is the set of class-K functions a : R>¢g — R>) .



Background — Control Barrier Functions

Definition. A C' function H : 7 x R" — R is a Control Barrier
Function (CBF) on a set X if there exists a locally Lipschitz
continuous ag € K such that Vo € X(t),t € T,

inf H(t,z,u,0,0)+W(t,2) < ag(—H(t, x)).

A /

e Define
W (t,x) = [VH(t,2)g(t, )|l wu,max + || VH(t, )| Wz max

which implies

H(t7 x? u? w'UJ ng)

e H(t,x,u,0,0)—W(t,z), H(t,x,u,0,0) + W(t,x)]
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Background — Control Barrier Functions

"Lemma ([6, Cor. 17]). Suppose H : T x R® — R is a CBF on the)
set Sy. Suppose there exists constants n1,m2 > 0 such that W satisfies
W(t,z) € [n,n2],Vx € Su(t),t € 7. Let oy, € K be locally Lipschitz
continuous. Then any control law w(¢,x) that is piecewise continuous in ¢
and locally Lipschitz continuous in x, and that satisfies: Vo € Sy (t),t € T,

A (t,2,u,0,0) < au (—H(t,2)W(t,2) = W(t,z) (1)
\Wﬂl render the set S forward invariant. p

(1) is called the “CBF condition”

. H(t, z,u,0,0) is control-affine Sh@
e Spyis aviability domain

R™\ S,
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Background — Control Barrier Functions

 CBFs are composable using the CBF condition (1) repeatedly

* Implement controller as an LP or QP satisfying (1) for all 2
U = argmin wt Ju + Fu

_ uel
H; <oy (—H;)W—W,Vi

e LP/QP with dimension m is computationally lightweight and
constraints can be easily added/removed
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CBFs for Input Constraints and Bounded Disturbances

* |nputs:
— Safe set function: h : 7 x R" - R
— Control input constraints: 2/
— Disturbance bounds: Wy max, Wz max
— Dynamics: f,g
* Assumptions — see [6]
* Qutputs:
— CBF: H: T xR" — R suchthat Sy C S,

[6] J. Breeden and D. Panagou, “Robust control barrier functions under high relative degree and input constraints for
satellite trajectories,” Automatica, 2022, under review. [Online]. Available: https://arxiv.org/abs/2107.04094
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CBFs for Input Constraints and Bounded Disturbances

e Given h: 7T x R"™ — R and under certain assumptions in
[6, Thm. 9], the following is a CBF for any ag € K

H(t,z) 2 o (cp(h(t, z)) — % ‘hw(t, :1:)| o (1, x)) (2)
ho(t,z) £ max  h(t,z,wy)

me ”Swm,max

where ® : R — R is derived from the dynamics f and g, input
constraints {4, and disturbance bounds w, max and Wy max

[6] J. Breeden and D. Panagou, “Robust control barrier functions under high relative degree and input constraints for
satellite trajectories,” Automatica, 2022, under review. [Online]. Available: https://arxiv.org/abs/2107.04094
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Outline and Contributions

2. Extension of safety to allow for tight tolerance objectives
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Problem with CBFs

* Robustness to bounded disturbances introduces margins

Su

‘SH,reachable

* The reachable safe set depends on the online disturbances w,,, w,

® o

Reachable safe set if Reachable safe set if Reachable safe set if
VH(t,x)g(t,z)w, VH(t,x)g(t,x)w, VH(t,x)g(t,x)w,
+ VH(t; :E)ng — W(t; fB) + VH(t, J;)wgg = O + VH(t, fE)ww = _W(t, ZC) 16/27




Problem with CBFs

* The conservatism induced by (1) is problematic for tight
tolerance objectives because
1) The reachable safe set may become empty
2) The target may not be inside the reachable safe set

N\ Margins induced by robustness
to worst-case W (¢, )
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Tuning Robust CBF Margins

{ H(t,z,u,0,0) <ay(—H(t,z))W(t,z)— Wt z) (1)]

 With H asin (2), we can choose any &y,

Lemma. If the control input u(t, z) satisfies (1) with equality and
x(tg) € Si(to), then limy_, o H(t,x) € [—a,1(2),0].

w

 Choose ay, such that the “effective margin” o' (2) is sufficiently
small

Sn
SH,reachable ) {QC‘ c R" | H(t,ﬂ?) < _a;1(2)}
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Outline and Contributions

3. Application to spacecraft docking
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Docking Requirements

¢ G|Ven fﬂ g) Z/{a wu,maxa wx,max

* Let hy, h, describe a docking cylinder

* Require hi(t,z(t)) < 0and
h.(t,z(t)) <0 forall ¢

* Let h be the distance along the
docking axis

* Require h(ts,xz(tf)) = 0 and
h(ty,z(ty)) € [v1,72] for some ty < oo
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Docking Implementation

* Use prior lemma to ensure that
SH reachable is always nonempty

* Use prior lemma and Theorems 1-3 in
paper (which relate H to h) to ensure

.d‘;g,5+/_ 2.5 cm/s docking axis requirements are

; satisfied in finite time

!
k .

N .
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1 0 O 1 0 X1 0 Wy 1

Ci?g . 0 0 0 1 X9 0 Wg 2

il I3n2 0 0 2n| |3 * Uy * Wy, 1

| T2 0 0 —2n 0] |22 U2 | Wy 2
h(x) = —xq — H (Thm. 3) (in-track distance)
hi(z) =21 — A — H; |6, Thm. 9] (left radial constraint)
hy(z) = -2, — A — H, [6, Thm. 9] (right radial constraint)
H,(z) = ||[#1, 22]|lcc — Vimaz (velocity constraint)

A=0.03m, VUmes=10m/s, U ={ucR? | ||uls < 0.082 m/s*}

Wy max = 0.002 m/s%, Wy max = 0.001 m/s
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argmin  ||u — Unom (£, 2)||° Hy(t,z) > 0
uel,
u satisfies (1) for H,
u satisfies (1) for H,
u satisfies (1) for H,

argmin  ||u — Unom (t,2)||*  Hi(t,z) <0
ueU,
u satisfies (1) for H,
u satisfies (1) for H,,
u satisfies (1) for H;
_ u satisfies (1) for H,

u(t,z) = <

* Unom iS an attractive control law (drives x to the origin)
» h; does not become active until the spacecraft first enters the safe set
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Simulation Results

Target Position Target Satellite Chaser Satellite
Time=00s Relative Distance = 10000.0 m

Relative Velocity = 0.00 m/s

(not to scale)
https://youtu.be/RoByiSD _jo
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Simulation Results
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Conclusions

* CBFs are an effective methodology to represent spacecraft
docking requirements

 The presented work allows tuning of CBF robustness margins
while guaranteeing safety

e Future work:

— Add additional constraints and realistic considerations:
* Fuel efficiency
e Obstacles
* Fixed frequency controller
* Measurement limitations
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Backup — Defining Docking

* Subproblems:

1. Ensure h(t,ac, wy) < 2 when h(t,z) =0 (safety — Theorems 1-2)
=  Construct H from h using a form similar to (2)
2. Ensure h(t,x) = 0 occurs in finite time (convergence — Theorem 3)

= Satisfy (1) with equality and choose proper &,
3. Ensure A(t,z,wy) > v when h(t,z) =0 (minimum energy — Corollary 1)
=  Define set of initial conditions where both velocity bounds are guaranteed

* Principal problem is relating the values of H to the values of A
in order to use prior lemma
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Backup — Solution to Subproblem 1

* Use the CBF (Theorems 1-2 in paper)
1. : 1
H(t,z) 2 ! ((I)(h(t,a:)) ~ 5 ‘hw(t,:c)’ ho (t, ) + 5*}/3 )

A . / v
R llowance
from prior work a ¢
or 72
0 ’ch 372 0 ’)flcl ' '3!}/2
005 1 005}
0.1 1 = o4}
0012 H>0] | | | 0012 He -2 1(®(0)+ 143), 0] H>0 ]
e 0 0.1 0.2 0.3‘ 0.4 0.5 0.6 0.7 - 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
R ﬁw
Docking states are inaccessible because Sy now includes the blue region, which
the prior work ensures h < 0 includes the docking states (magenta line)
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Backup — Solution to Subproblem 2

'Theorem. Suppose apt(2) = =P (3793 + 2(0) — 2 (20h Wy max + |
71)2) > 0. If the control input satisfies (1) with equality and x(g) €
S(to), then there exists finite ¢y > to such that h(tr, z(tf)) = 0.

/

 This relates the values of H to the values of A

All trajectories o= — ol
satisfying (1) with 005}
equality reach L
the black line 015 He |[-a.1(2), 0 7 =0

-0.2 ' '
0 0.1 0.2 0.3 04 0.5 0.6 0.7

h w
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Backup — Solution to Subproblem 3

Corollary. If additionally H (tg,z(tg)) > —a;,1(2), then

h(ty,xz(ts)) > 71, i.e. docking is achieved.

All trajectories reach the
black line but only 0
trajectories inside the = 05?
gray set are guaranteed to _(;_15
reach the magenta line 02

h w

The colors correspond to different disturbances
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